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Abstract
We present and interpret simulation results showing how a fluid moves on a hydrophilic
substrate patterned by a square array of triangular posts. We demonstrate that the shape of the
posts leads to anisotropic spreading, and discuss how this is influenced by the different ways in
which the posts can pin the advancing front.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a drop of liquid is placed on a surface it can either spread
out to wet the surface, or form a spherical cap. In the second,
partial wetting, case the contact angle, between the tangent to
the drop and the surface, is given by Young’s equation [1]

cos θY = γSG − γSL

γ
(1)

where γSG, γSL and γ are the solid–vapour, solid–liquid and
liquid–vapour surface tensions respectively. Young’s equation
assumes that the contact line, where the liquid, vapour and
surface meet, is able to move freely to enable the drop to relax
to its equilibrium shape.

However, if there are surface heterogeneities, the contact
line can be pinned leading to changes in the drop shape.
Random impurities are difficult to treat theoretically, and
cause problems in obtaining precise values for contact angles.
However, as a result of recent advances in microfabrication
techniques, it is becoming increasingly viable to fabricate
surfaces which are micropatterned with posts or regular
patches of different contact angle. These can be used to
investigate the pinning behaviour of liquid drops and films, and
have the potential to control fluids in microfluidic applications.

Johnson and Dettre [2] were the first to elucidate the
nature and cause of contact line pinning. They placed drops
axisymmetrically on substrates composed of concentric rings
of hydrophilic and hydrophobic material and found that the
contact line remained pinned on the hydrophilic–hydrophobic
borders for contact angles between those of the two adjacent

Figure 1. Illustration of the Gibbs criterion. At a sharp corner, on a
material surface, a wetting contact line remains pinned for all angles
between the orientated equilibrium angles of the two planes: between
θY and θY + ψ .

rings. The pinning occurs because both retreating to dewet
the hydrophilic region, and advancing onto the hydrophobic
region carry a free energy cost. Oliver, Huh and Mason [3, 4]
recorded similar pinning at sharp corners. This is an example
of the Gibbs criterion which states that the contact angle
will take a range of values spanning the dihedral angle of
the corner (see figure 1) [5]. More recent theoretical and
experimental work has studied how edge and corner pinning
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Figure 2. Different drop shapes depending on (a) and (b) the arrangement and (c) and (d) the shape of the posts. (a) Cylindrical posts which
form a square lattice. (b) Cylindrical posts which form a hexagonal lattice. (c) Triangular posts which form a square lattice. (d) Hexagonal
posts which form a square lattice. The figures in panels (a) and (b) are experimental results taken from [17] (©2007 Nature Publishing
Group), while those in panels (c) and (d) are from our simulations.

are important in controlling the shape of drops on surfaces
patterned with chemical stripes or topographic ridges [6–9].
The anisotropic pinning of the surface structure is reflected
in the final shape of the drops. Moreover pinning on
the tops of arrays of hydrophobic posts or ridges leads to
superhydrophobic behaviour, associated with unusual drop
hysteresis and dynamics [10, 11].

Capillary filling is also strongly affected by pinning effects
caused by defects on the surface of a microchannel [12, 13].
Indeed, the filling is halted if there is a ridge lying across the
channel, whose trailing edge makes an angle ψ with the sides
of the channel, if

ψ > 180◦ − 2θY. (2)

This is due to the interface pinning on the corner of the ridge.
An immediate consequence is that ridges with sides of differing
slope can lead to anisotropic flow speeds, or unidirectional
flow.

A situation similar to capillary filling is the spreading of
liquid upon a single surface. Nonuniformities of the surface
may lead to this spreading being anisotropic in nature, for
example Cubaud and Fermigier [14] noted that on a surface
regularly patterned with chemical defects, a spreading drop
forms faceted shapes, with the outer contact lines pinned on
rows of defects. A related problem is the spreading of a thick
film through an array of hydrophilic posts, prevented, again by
pinning, from covering the tops of the posts, a phenomenon
termed imbibition [15, 16]. Courbin et al [17, 18] formulated
pinning arguments describing the evolution of the fluid layer,
together with a dynamical explanation of the final shape it
would take. They argued that the top of the liquid film is
pinned on the top edges of the posts, while the bottom of
the film is able to move forward along the base. Spreading
will occur if the film touches the next row of posts before it

reaches the Young angle. The speed of this process depends on
the post shape and spacing, and the Young angle. Therefore
the drop can attain an anisotropic shape, with a symmetry
reflecting that of the underlying lattice as shown in figure 2.
Courbin et al also noted that the advance of the imbibition
front occurred via an ‘unzipping’ transition as the contact line
depinned consecutively from neighbouring posts, a process
also identified by Sbragaglia et al [19].

Given the striking effect of post shape and anisotropy on
capillary filling we might expect similar features to be observed
in imbibition, an expectation confirmed by the results shown
in figures 2(c) and (d). The interplay between geometrical
pinning and capillary forces may be extremely complex,
making the shape of spreading drops difficult to predict. To
investigate the different mechanisms that play a role, we focus
in this paper on simulation results showing how a square
array of triangular posts is wet by an imbibing film as the
contact angle is varied. The simulations allow us to follow
the depinning of the interfaces in some detail, and relate it to
the post geometry and the interface dynamics. We find that
the spreading is indeed anisotropic, in a way that reflects the
geometry of the triangles. The mechanism for depinning is
strongly dependent on the details of the post geometry and
on the Young angle, and depinning from both the top and the
side edges of the posts is important in controlling the fluid
behaviour.

2. Simulation geometry

To understand the effect of pinning on the way a fluid spreads
we consider, as a test case, imbibition through a square array
of triangular posts. On grounds of symmetry, we would expect
this geometry to show anisotropic spreading. We demonstrate
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Figure 3. Schematic diagram showing post dimensions.

that this is indeed the case, and indicate how the spreading
depends on both the post shapes and the contact angle.

The geometry we consider, illustrated in figure 3, is a
square array, of lattice spacing d , of posts on a flat base. The
cross-section of each post is uniform, and is an equilateral
triangle, orientated to point along one of the primary axes of
the array. We take this to be the positive x-direction and we
will refer to it as the ‘forward’ direction. The blunt ends of the
posts face the ‘backward’ direction, along −x .

We denote the length of the sides of the posts by b, and
their height by h. Thus the narrowest gap between triangles
is along y with spacing d − b, while the minimum spacing
between the posts along x is d −

√
3

2 b. We consider equal post
dimensions and a post spacing, d = 2h = 2b (=20 lattice
units). The posts and base substrate are taken to have the same,
hydrophilic, Young angle.

We describe the equilibrium properties of the fluid in terms
of a simple Landau free energy functional, and the dynamics
by the Navier–Stokes equations. This gives a diffuse interface
model of the drop statics and dynamics, which we solve using a
lattice Boltzmann algorithm. Details of the equations are given
in the appendix.

Imbibition is initiated by placing a small cylinder of liquid
of radius 8 lattice units, extending between z = 0 and h, at the
centre of simulation box. The drop is replenished as it spreads
by adding fluid from a virtual reservoir. This is done by setting
the density parameter at the starting location of the drop to the
bulk equilibrium value in the liquid phase at each time step in
the simulation. In this way, liquid is introduced while there is
outwards flow, but once the interface is fully pinned, no new
liquid enters the system.

3. Imbibition in the x-direction

To isolate the pinning effects in the x-direction we first
consider a quasi-two-dimensional system, consisting of two
rows of posts with periodic boundary conditions along y. We
shall then compare similar simulations for spreading along y.
We slowly reduce the Young angle with the aim of observing
the sequence of depinning transitions which occur. Simulations
showing how a drop spreads along the x-axis, as the contact
angle is reduced, are illustrated by the series of plan views
in figure 4. Three-dimensional snapshots of the interface, at
corresponding times, are also displayed. At the initial Young

angle of 60◦, the liquid is confined within its four closest
posts, as shown in projection in figure 4(a) and, in a full three-
dimensional view, in frame 4(m). The interface is pinned on
the edges of the posts, unable to advance further.

At a Young angle of 59◦, the contact line inches forward
across the surface to meet its periodic image along y. As shown
in figures 4(b) and (c), this enables the fluid to rearrange to
form a configuration with the periodicity of the lattice along y.
As it does this, fluid from both sides of the post tips meets. As
a result the interface can no longer remain pinned to the tips
and it depins to advance along +x .

However, the interface almost immediately becomes
pinned again: this time it is held back by the top of the blunt
ends of the posts as shown in figures 4(c), (n) and (o). On
the base, the contact line has reached the Young angle and
hence there is no capillary force driving the drop to spread. The
mechanism behind this pinning is that any further progression
of the fluid into the widening gap between the triangles, whilst
maintaining the same angle with the substrate, leads to a
thermodynamically unfavourable increase in interfacial area.

As the Young angle is decreased further the contact line is
able to creep forward across the base, until it reaches the edges
of the next posts. It quickly spreads forwards and upwards past
the posts as shown in figure 4(d), until it is pinned in the next
gap figure 4(e). The contact angle must be lowered further
to overcome this pinning because the Laplace pressure, which
drives the spreading, decreases as the drop size increases. The
interface finally reaches the next row of posts at a Young angle
of about 51.5◦. Subsequent jumps become increasingly easy.
This is because, as the drop gets bigger, the Laplace pressure
varies less rapidly with size.

When the Young angle reaches 44.5◦ the drop starts
to move along −x . Three-dimensional views of the drop
configuration just before and just after this transition are shown
in figures 4(p) and (q). At this Young angle, a portion of the
interface near to the base is able to advance around the corners.
Liquid from the two sides meet and the interface quickly moves
upwards until the entire back faces of the posts are wet, thus
allowing depinning. As the interface now meets the substrate at
an angle much larger than the Young angle, it advances rapidly
towards the next set of posts. The flow is faster for these
depinning events because they occur at lower contact angles
and therefore, once depinning has occurred, the capillary force
is stronger.
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Figure 4. (a)–(l) Plan view showing progressive wetting of the substrate (in blue) as the Young angle is slowly decreased and the water is
introduced from a ‘virtual reservoir’ at the centre of the sample. The Young angle is recorded on each view and P and D denote a pinned or
dynamic state, respectively. (m)–(q) Three-dimensional views of the interface showing details of the pinning.

Figure 5. Mirror substrate configuration. (a) forward facing, (b) backward facing.

Once the liquid is moving towards −x , it does not advance
in the +x direction. This is a dynamical effect related to the
way in which we refill the channel; the fluids is capable of
moving in either direction, but does so more easily in the −x-
direction. To isolate this effect we next consider filling in
mirror-image geometries.

3.1. Mirror-image substrates

In our investigation of imbibition along x we noted that flow
in a given direction may be inhibited by either static effects
(pinning on surface features) or dynamic effects (being out-
competed by flow in the opposite direction). To isolate the
former we performed simulations where the orientation of
the triangular posts was invariant under reflection about the
reservoir region (see figure 5). Now the pressure is the same in

either direction and the contact line will only stop when a static
equilibrium is reached.

We ran simulations for a range of constant Young angles
and measured the final distance travelled by the contact line
before pinning. Results, for the forward facing and backward
facing triangles, are compared in figure 6. For θY � 40◦
spreading continues indefinitely in both directions. When θY �
45◦, there is pinning on the first row of posts for the backwards
direction. There is also pinning in the forward direction, but
not necessarily on the first posts; for θY = 45◦ the interface
advances past three posts, for θY = 50◦ two posts, and for
θY = 55◦ just one. For θY � 60◦ the interface is confined to
the immediate vicinity of the reservoir.

These simulations also allow us to look more closely at
the spreading dynamics. In figure 7 we plot the x-coordinate
of the contact line (measured mid-way between the posts) as a
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Figure 6. The distance the contact line advances before pinning, as a
function of the Young angle. Dotted, red, diamonds: forward facing
triangles. Solid, blue, squares: backward facing triangles. The
integers on the y-axis lie at the centres of the gaps between posts.

function of time for θY = 40◦. We compare the two mirror-
image systems, with posts pointing away from, and towards,
the centre. There is overall slowing of the spreading rate
with distance from the source because the Laplace pressure
is decreasing and because the viscous retardation increases
with area of substrate wetted. Superimposed upon this is an
oscillation with the period of the patterning, which results
from changes in the capillary force as the surface features are
traversed. For both geometries the interface pins on the blunt
end of the posts, and filling is most rapid when the contact line
is between the posts. The sharper boost occurs when filling the
gap in the backward direction. This is because the narrowing
gap reduces interfacial area and hence promotes the advance of
the interface.

4. Imbibition in the y-direction

We now compare pinning for an interface spreading in the y-
direction. We again consider a quasi-two-dimensional system,
consisting of two rows of posts, but now with periodic
boundary conditions along x , and follow the behaviour of the
drop as the contact angle is decreased quasi-statically. A series
of plan views of the base of the drop at different times are
shown in figure 8. Figure 8(a) shows, as expected, a small drop
pinned on the vertical corners of the four surrounding triangles.
The interface joins with its periodic image along x at θY ∼ 56◦.
Once this has occurred there is depinning along both ±y, but
the contact line stops at the subsequent rows of posts.

Figure 8(b) shows that the contact lines are pinned at the
vertical edges of the triangles. With decreasing Young angle
the contact line depins from the corner pointing along +x and
creeps across the face of the triangle, as shown in figures 8(c)
and (f). Once it has crossed the side of the post it comes into
contact with the interface in the adjacent gap and the contact
line advances slightly.

However, it is almost immediately held up by pinning on
the top of the posts, as shown in figures 8(d) and (g). As
for the +x pinning discussed in section 3, the contact line
makes the Young angle with the base substrate, and is held
from advancing further by the post. This pinning is weaker
than that for motion along x because the wall is at an angle to

Figure 7. Position of the contact line as a function of time for
θY = 40◦ for the mirror-image substrates. Dotted, red, diamonds:
forward facing triangles. Solid, blue, squares: backward facing
triangles. The integers on the y-axis lie at the centres of the gaps
between posts.

the advancing contact line. The contact line reaches the next
row of posts at θY = 49◦, and then spreads onwards, slowing
at subsequent posts.

5. Discussion

The examples in figure 2 show that the arrangement and shape
of posts on a hydrophilic surface can strongly affect the way
in which a drop spreads on the surface. In this paper we
have concentrated on the effect of post shape, and the way in
which Gibbs pinning on post corners can affect the dynamics.
As a simple system illustrating the behaviour we considered
spreading on a square array of triangular posts.

A choice of two-dimensional geometries allowed us to
directly compare the dynamics in different directions relative
to the orientation of the triangles. We found that the spreading
is, as expected, anisotropic. Although depinning can occur at
a higher contact angle in the forward direction (towards the
points of the triangles), at lower contact angles the average flow
velocity is higher in the backwards direction. This is because
of a complex interplay between the pinning and the strength of
the capillary forces which pull the drop through the array of
posts.

Mechanisms of pinning are complex, and the interface
can be pinned on the top or side edges of the posts. Indeed,
the importance of pinning phenomena in this geometry is
highlighted by a comparison with the spreading condition for
imbibition derived by Bico et al [15] using averaged surface
properties

cos θY � 1 − φ

r − φ
(3)

where r is the ratio of substrate area to projected area and φ
is the ratio of the area of the post-tops to the projected area.
For our geometry this criterion becomes θY � 57.1◦, which
is a significantly higher threshold than our observed value of
40◦–45◦.

In further work we will compare results for the full three-
dimensional geometry, where the connectivity of the interface
will introduce new effects. Experiments on cylindrical posts
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Figure 8. (a)–(e) Plan view, showing (in blue) the regions of base substrate which are sequentially wet by the drop as the Young angle is
decreased for filling in the y-direction. The Young angle, which is applied to both the base and posts, is recorded on each view. (f), (g)
three-dimensional views of the interface showing details of the pinning.

have shown a range of final shapes for imbibition, depending
upon surface parameters [17], and we aim to investigate
how this picture is complicated by the shape of the posts
and the consequent pinning. We hope that our calculations
will stimulate further experiments on the effects of post
shape on imbibition, and on the related problem of capillary
filling. Understanding the interplay between pinning and
capillary action more fully could help to design novel ways
of controlling fluids in microfluidic channels.

Appendix. Model details

In the simulations reported here, the liquid drop and its
surrounding gas are modelled using a one-component, two-
phase fluid. The equilibrium properties of the system are
described by a Landau free energy functional of the form

� =
∫

V

(
ψb(n)+ κ

2
(∂αn)2

)
dV +

∫
S
ψs(ns) dS. (A.1)

The first term ψb(n) is a bulk free energy term which we take
to be [20]:

ψb(n) = pc(νn + 1)2(ν2
n − 2νn + 3 − 2βτw) (A.2)

where νn = (n − nc)/nc, τw = (Tc − T )/Tc and n, nc,
T , Tc and pc are the local density, critical density, local
temperature, critical temperature and critical pressure of the
fluid respectively. The parameter β is related to the density
contrast between the liquid and gas phases. This choice of free
energy leads to two coexisting bulk phases (liquid and gas) of
density nc(1 ± √

βτw).
The second term in equation (A.1) models the free

energy associated with any interfaces in the system. The
parameter κ is related to the surface tension through γ =
(4

√
2κpc(βτw)

3/2nc)/3 and the interface thickness through
ξ = √

κn2
c/4βτw pc [20].

The final term in equation (A.1) describes the interactions
between the fluid and the solid surface. Following Cahn [21],
the surface energy density is taken to beψs(n) = −φ ns, where
ns is the value of the fluid density at the surface. The strength
of the interaction is parameterized by the variable φ, and is
related to the contact angle, θY by [20]

φ = 2βτw
√

2pcκsin

(
π

2
− θY

)√
cos

α

3

(
1 − cos

α

3

)
(A.3)

where α = cos−1 (sin2 θY) and the function sign returns the
sign of its argument. In the simulations, this equilibrium
wetting boundary condition can be implemented by setting the
gradient of the density perpendicular to the solid surface to

∂⊥n = −φ/κ. (A.4)

The hydrodynamics of the drop is described by the continuity
and the Navier–Stokes equations

∂t n + ∂α(nuα) = 0 (A.5)

∂t(nuα)+ ∂β(nuαuβ) = −∂β Pαβ
+ ν∂β [n(∂βuα + ∂αuβ + δαβ∂γ uγ )] (A.6)

where u, P, and ν are the local velocity, pressure tensor, and
kinematic viscosity respectively. No-slip boundary conditions
on the velocity are imposed on the surfaces adjacent to and
opposite the drop and periodic boundary conditions are used
in the two perpendicular directions. The thermodynamic
properties of the system appear in the equations of motion
through the pressure tensor P; mechanical equilibrium is
equivalent to minimizing the free energy. P can be calculated
from the free energy [20] to give

Pαβ =
(

pb − κ

2
(∂αn)2 −κn∂γγ n

)
δαβ +κ(∂αn)(∂βn), (A.7)

pb = pc(νn + 1)2(3ν2
n − 2νn + 1 − 2βτw). (A.8)
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Equations (A.5) and (A.6) are solved using a lattice
Boltzmann algorithm. Details of this approach, and of its
application to drop dynamics, can be found in [20, 22–24].

We have chosen the following parameters for the
simulations: κ = 0.01, pc = 1/8, nc = 3.5, T = 0.4,
Tc = 4/7, β = 1, τL = 2 and τG = 0.7. These correspond
to an interfacial thickness ξ = 0.9, surface tension γ = 0.029,
viscosity ratio ηL/ηG = 7.5, and density ratio nL/nG = 3.42
(all in lattice units).
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